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Abstract 

New deformed affine algebras, &,,,(d), are dened for any simply laced classical Lie algebra g, 
which are generalizations of the algebra, dh,O(sZ~), recently proposed by Khoroshkin-Lebedev- 
Pakuliak (KLP). Unlike the work of KLP, we associate with the new algebras the structure of an 
infinite Hopf family of algebras in contrast to the one containing only finite number of algebras, 
introduced by KLP. Bosonic representation for d*,q(g) at level 1 is obtained, and it is shown 
that, by repeated application of Drinfeld-like comultiplications, a realization of Ah,,(g) at any 
positive integer level can be obtained. For the special case of g = s&+1, (Y + 1)-dimensional 
evaluation representation is given. The corresponding interwining operations are also discussed. 
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1. Introduction 

Since Drinfeld [9-111 proposed the quantum groups and Yangian algebras as defor- 
mations of the universal envoloping algebras of the classical Lie algebras, Hopf algebras 
with nontrivial coalgebra structure, especially q-affine algebras [32] and Yangian dou- 
bles [22,23], have become one of the major subjects of pure and applied algebra studies. 
Recently progress in the study of Hopf algebras and applications include the free boson 
representations of q-affine algebras and Yangian doubles at higher level [4,18,25], and the 
possibility of describing the dynamical symmetries and solving the correlation functions 
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of certain solvable lattice statistic models and integrable quantum field theories within a 
pure algebraic framework [1,5,26-28,30,35]. The latter problem is, if not the sole force, 
among the driving forces which lead to the study of deformed algebras beyond Hopf al- 
gebras Examples of such deformed algebras are q- [2,3,12,16,29-31,33,34] and A- [7,17] 
deformed Virasoro and W algebras, the elliptic algebra dq,p(az) [14,15] and its scaling 
limit dh,l (22) [24], and the algebra of screening operators of the q-deformed W-algebras 
[ 131 and so on. 

In this paper, we extend the recent work of Khoroshkin et al. [24] on the scaling algebra 
dR,,(zz) of the elliptic algebra $2q,p(?2) to the general case, dh,o(j), where g can be any 
classical simply laced Lie algebra of any admissible rank. The algebra dh,rl $2) introduced 
in [24] is a formal algebra with generators carrying continuous indexes. One of the principal 
motivation of [24] was to establish a better understanding of the algebra dqq,(z2) from the 
representation theory point of view because the representation theory of d4,p (22) has been 
rather obscure since its birth [ 14,151. For this, the authors of [24] considered the scaling limit 
dh,a(z2), instead of A,, $2) itself, with generating functions being analytic along some 
strip -which plays the role of fundamental parallelogram for the elliptic algebra A, ,p (22) - 
in the complex plane. The algebra db,v((s22) turns out to be not a Hopf algebra but belongs 
to a Hopf family of algebras in which the comultiplication can be made associative on 
changing the periods of structure functions for different iterations of the comultiplication. 
Moreover, the twisted intertwining operators appearing in the representation theory of the 
algebra dh,q((s22) satisfy a familar set of commutation relations which were used in the 
calculation of correlation functions for Sine-Gordon model. 

We shall show that the algebra dp,q (22) actually belongs to (and constitutes the simplest 
example of) a new type of deformed affine algebras, dh,,(g). Just like their simplest rep- 
resentative, dh,q(sZ2), these new deformed affine algebras are not Hopf algebras, because 
the second deformation parameter r] spoils the usual Hopf algebra structure. However, we 
regard them as deformations of the usual Hopf algebras for two reasons. First, as the second 
deformation parameter Q approaches zero, the currents for the algebra dh,rl(g) obey the 
same commutation relations as that of the Yangian double with center DY, (g)=. Second, if 
we consider the zero level representation of dh,,(i), the algebraic relations become Hopf 
algebra again. 

Due to the complication for the case of general g, we restrict ourselves only to the current 
realization. In this form, it is not easy to write down the analog of comultiplication used 
by KLP [24]. We, therefore, use an analog of the well-known Drinfeld comultiplication to 
study some aspects in the structure of our algebra. It is, however, not known whether the 
finite Hopf family structure of KLP can be realized using this form of comultiplication. To 
circumvent this drawback, we introduce an alternative notion, which we call the infinite 
Hopf family of algebras, to write down the interactions of comultiplications in a convenient 
form. It turns out that this new notion leads to an astonishingly by simple realization of our 
algebra at any positive integer level. 

Besides the pure algebraic elegance, our algebras are also expected to have relevant appli- 
cations in such fields as an algebraic formulation of quantum symmetry and the calculation 
of correlation functions for affine Toda field theories. 
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2. The algebras Ah,,(d) and infinite Hopf families 

2.1. The algebra dh,,,(g) 

We begin our study by introducing the formal current algebra (denoted also by the symbol 
dh,l(j)) associated with dh,?(g). The special case of g = s/2 can be inferred from [24]. 
For other simply laced classical algebras g, the following definition has, to our knowledge, 
not been introduced anywhere else. 

Definition 1. The current algebra dh,a(g) associated with the classical simply laced Lie 
algebra g of rank r (as an associative algebra with unit over the field C) is generated by 
the 3r currents {Hi*(u), Ei(u), Fi(U)]i = 1,. . . , r}, the central element c and 1 with the 
following generating relations: ’ 

= sih n17(U - u - ifi(&j - C/2)) sinh rrn’(z.4 - u + ifi(Bij - c/2)) 

sinh nV(u - u + ih(&j + C/2)) sinh nn’(u - u - ifi(Bij + c/2)) 

x HjJv)Hi+(u), (1) 

Hi*(u)HJt(v) = sinh nq(u - V - iABij) sinh nl)‘(U - V + ihBij) 

sinh Jrq(U - V + ittBij) sinh Jrn’(U - V - iABij) 

x H~~(v)H~*(u), 

H+(u)E.(v) = sir’h mu - v - ih@ij F c/4)) E,(v)H+(u) 
1 J sinh nq(Z4 - V +ifi(Bij &C/4)) J ’ ’ 

H~(U)Fj(V) = 
sinh nQ’(Z.4 - V + ih(Bij 7 C/4)) 

sinh nn’(U - V - ih(&j f C/4)) 
Fj(V)Hi*(u), 

Ei(u)Ej(v) = ‘l* *‘(’ - ’ -lABij)Ej(v)Ei(u), 

sinh Tr](U - V + ihBij) 

sinh Tn’(Z4 - 2, + iABij) 
Fi(U)Fj(V) = . 

Slllh Tq’(Z4 - V - i?ZBij) 
Fj(V)Fi((u), 

[Ei(u),~(V)=$Sij[S(u-V-~)H+(~-~) 

-+-v+~)H;(v-~)], 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Ei(ul)Ei(u2)Ej(V) -2Cos(~~~)Ei(~l)Ej(v)Ei(u2) + Ej(v)Ei(ul)Ei(u2) 
+(UI + ~2) = 0, for Aij = -1, (8) 

’ Throughout this paper, the subscript i of the current operators take integral values, which indicates different 
root directions of the underlying Lie algebra g, whilst the symbol i preceding the h’s in the structure functions 
represents &i. 
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Fi(“l)fi;:(U2)Fj(v) -2cos(nr’A)I;;:(u1)Fj(u)~;;:(u2) + Fj(v)Fi(Ul)Fi(U2) 

+(uit,u2)=0, forAij=-1, (9) 

[c, everything] = 0, (10) 

where U, u etc. are spectral parameters, real A, n are two deformation parameters, Bij = 
Aij /2, Aij are matrix elements of the Cartan matrix for the Lie algebra g, and ’ 

1 1 --- 
V’ rl 

= ttc. 

Remark 1. For g = ~12, the above current algebra reduces to the current realization of 
dh,q(z2), where the Serre-like relations (8) and (9) are not present. 

Remark 2. In the limit q --f 0, the current algebra dh,o(g) would have the same form 
as that of the Yangian double DYh(g). But the limiting algebra dh,o(i) should not be 
considered to be isomorphic with the Yangian double DYh (g) because the element of the 
algebra dh,o(g) carries a continuous index whilst that of the Yangian double DYh (g) carries 
a discrete one. For more information on g = sZ2, see [24]. 

To have a precise definition for the algebra dh,, (g) (and not its current realization form), 
we have to consider two different cases as in [24] for ~12: (1) the case c # 0; and (2) the 
case c = 0. In the first case, one should consider the current {Hj* (u), Ei (u), Fi (u)} as 
the following Fourier transforms of the actual elements r;(h), ei (h) and fi (h) (A E R) of 

the algebra dh,,,(i), 

-cc 

00 

Ej(u) = 
s 

dheihU (h), 

--oo 
co 

Fi(u) = 
s 

dheilU fi (h) , 

-cc 

whereas in the second case, the currents Hi*(u) should be given another expression in terms 
of the actual elements hi(h) of dh,ll(g) at c = 0, 

2 We assume throughout this paper that q and h are generic, i.e. ft is not a rational multiple of q. 
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The difference between c # 0 and c = 0 can be summarized in a more compact relationship 
between the algebra generators ti (h) and hi (h). In fact, from the two expressions of Hi*:(u), 
we can write down the following relation at c = 0, 

hi(h) = ti(L) sinh $ . 
( > 

Therefore, in the limit c + 0, hi (0) is well-defined, but ti (0) tends to infinity. On the 
contrary, when c # 0, ti (0) is well-defined and hi (0) tends to zero. 

Given the above Fourier transformations, one can, in principle, write down the generating 
relations for the algebra d*,l (g) in terms of the continuous generators ti (h)(hi (h)), ei (A) 
and fi (h). However, such relations are rather complicated and they are of no use in the 
rest of this paper. Therefore, we shall omit such relations and consider only the current 
realization (l)-(10) of the algebra dh,rl(g). 

Unlike the usual q-affine algebras and the Yangian doubles which are by definition non- 
trivial Hopf algebras, whether the algebra under consideration has a Hopf algebra structure 
is not known, Recall that a Hopf algebra A is an algebra endowed with five operations 
(linear maps): 
- the algebra multiplication m : A @I A + A, m(a 8 b) = ab for VCZ, b E A; 
_ the unit embedding 1 : C + A, L(C) = cl, c E C, 1 E A is the unit element; 
- comultiplication A : A + A 18 A, A(ab) = A (a) A(b) for Vu, b E A; 
- the antipode S : A + A, S(ub) = S(b)S(u) for Vu, b E A; and 
- the counit E : A + C, e(ub) = e(u)e(b), for Vu E A, where E(U) E C. 

To make the algebra A into a Hopf algebra, these structures have to obey the following 
axioms, 

mo(m@id)=mo(id@m), (11) 

(ACQid)oA=(id@A)oA, (12) 

(E@id)oA=id=(id@e)oA, (13) 

mo(S@id)oA=e=mo(id@S)oA. (14) 

For our algebra dh,q(i)r only the first of these axioms holds explicitly, which ensures the 
associativity of the algebra multiplication. The operations A, E, S cannot be defined on 
the algebra dh,a(g) alone. However, as first discovered in [24], a well-defined coproduct 
can be defined over the so-called “Hopf family of algebra” containing a finite number of 
algebras of the kind dh,o(zz) but with different parameters 17. However, as stated in the 
introduction, the case for arbitrary g is much more complicated and we can only make our 
analysis in the current realization. This difficulty prevented us from obtaining an analogous 
structure of KLP’s Hopf family of algebras because the analogous comultiplication is not 
known. Therefore, we proceed to introduce an alternative notion - the infinite Hopf family 
of algebras. it should be remarked that no relationship is implied here between our infinite 
Hopf family of algebras and the (finite) Hopf family of algebras introduced by KLP. 
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Definition 2. Let {A,, , tz E H) be a family of associative algebras with unit defined over C. 
If on each A,, one can define the following operations 
- the comultiplications AT : A,, + An 8 An+19 A,+(qn,) = Ci a;nji @ a;n+lji and 

A; : A, + An--1 c3 An, Ar;(a(,)> = xi u{,_~)~ c3 u;,)~, where a(, a;,+, etc. E A,, 
and AZ are algebra morphisms; 

_ the counits ??n : An + C; and 
- the antipodes S,’ : An + -4~1, S:(a(,jb~,)) = S~(b~,~l))S~(a(,*l)), which are 

anti-morphisms, 
and if they satisfy the following constraints, 

(En ~3 id,+lMz = i&+1, (15) 

(id,+1 63 E~)A, = id,_t, (lo) 

m,+l 0 (S,’ 8 id,+]) 0 AZ = ~+t, (17) 

m,_t o (id,-1 8 SJ o Ai = ~~-1, (18) 

where m, is the algebra multiplication for the nth component algebra A,,, then we call the 
family of algebras {An, n E Z} an infinite Hopf family of algebras. 

A trivial example for the infinite Hopf family of algebras is the family {An = A, n E Z) 
in which A is a usual Hopf algebra. In this case, all our axioms (15)-(18) hold with the 
comultiplications A:, counits ??n and the antipodes S,” being identified with those corre- 
sponding structures for the usual Hopf algebra. Note that, in this trivial case, we have one 
more axiom, Eq. (12), which represents the coassociativity of the comultiplication. For the 
general case, no coassociativity is required. One may consider the lack of coassociativity in 
our infinite Hopf family of algebras a serious drawback compared to the (finite) Hopf family 
structure of [24]. However, it will soon be clear in Proposition 2 that this structure would 
bring about a great advantage in obtaining realizations of our algebra at integer levels k > 1. 

We now proceed to construct a nontrivial example for the finite Hopf family of algebras 
containing our algebra Ah, ,, (g) as a member. 

Let q(O) = q. For all IZ E Z, let us define ncn) recursively, such that 

where c,, are a set of parameters and co = c, the center of our algebra Ati,s (2). Clearly, 
for II = 0, we have Q(I) = n’. The notations A*,+,,)(&, have obvious meaning with the 
specification Ah,v(o)(&-o = Ah,17(i). 

Proposition 1. The family of algebras {A,, s Ah,+,,) (&,,, n E Z} form an injinite Hopf 
family of algebras with the comultiplicutions A,f, counits E,, and antipodes S,’ defined us 
follows: 
- the comultiplicutions AZ: 

A,‘cn = cn + ++I, (19) 
A;cn = c,-I + c,, (20) 
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A+H+(u; @)) = H? 
n I 1 

A, Hi+(u; r+‘)) = Hi+ 

A+H,-(u. r’“‘) = ff- 
nc ’ I 

A, Hi-@; r]@)) = Hi- 

A+Ei(u; q@)) = Ei(u; +l)) @ 1 n 

+ Hi- (25) 

A,Ei(u; qCn)) = Ei(u; vCn-‘)) @ 1 

ihc,_l ; 17w) 
4 (26) 

A+Fi(u. q@)) = 1 @ F;(u; @+l)) n ’ 

+ Fi iAc,+l u + 4; q@+‘) (27) 

Ai Fi (u; q’“‘) = 1 8 Fi (u; vCn)) 

(28) 

- the counits ??n: 

Gl(cn> = 0, Gl(Ll) = 1, &H.*(u. r+@)) = 1, 

En(Ei(U; ?jcn))) = 0, En(Fi(u; q(‘);) ~‘0; 

- the antipodes S,‘: 

s,“<cn> = --c&l> 

S,i(H+(u; r/c’))) = [Hf(u; r+“*‘))]-‘, 1 1 

Sf(E&. v(n))) = -H- n L 

S*(Fi(u; q(‘))) = -Fi n 

where the second arguments in the current operators (the q’s) indicate to which algebra 
the currents belong. 



256 B.-I: Hou et al./Joumal of Geometry and Physics 27 (1998) 249-266 

The proof for this proposition is straightforward. Note that, in this example, the result of 
the action of the comultiplications AZ_, on A,_ 1 coincides with the result of the action of 
A; on An, 

A,dn = A,+_,dn-1. 

Consequently, both comultiplications “co-commute”, 

(id @ Ai)A, = (A, 18 id)A+ n’ 

Two more remarks are in order. 

Remark 3. In the case of cn = 0, for all n E Z, the infinite Hopf family of algebras 
become trivial again because there are no differences between the algebras d*+) (& and 

d2h,rl(m) (& for any pair of n, m E Z. 

Remark 4. Under the cases of Remarks 2 and 3, the above structures for the infinite Hopf 
family of algebras reduce to the original Hopf algebra structure. In particular, under the case 
of Remark 2, the comultiplications would have the same form with the so-called Drinfeld 
comultiplication for the Yangian double. 

The comultiplications introduced above are useful not only in clarifying the structure of 
the infinite Hopf family of algebras but also in the representation theory of the representa- 
tive algebra dh,V(g). Before going into detailed structure of representations, we state the 
following proposition, which can be directly verified. 

Proposition 2. The comultiplication 0; dejined in Eqs. (19)-(28) induces algebra homo- 

morphismfrom dh,,,w (&,+C,+l to &,7(x) (&, @d*,rl(x+l) (&,+,, A; induces homomor- 
phismfrom dh,+=i)(&_,+c, to &,+-i)(&_l 8 &(n) G),. 

Actually, the above proposition states that the images of the generating currents Ei (u; 
r]@)), Fi (u; q@)) and Hi*(u; n@)) of dh,+“) (&, under AZ satisfy the defining relations 

for d*,,(n) (&,+c,+l and &,+I) (&_,+cn 7 respectively. This result is quite astonishing 
an one hand, and will be quite useful for constructing a higher level realization out of level 
1 representations, on the other. Therefore, we proceed to consider the level 1 representation 
of our algebra. 

3. Representation theory 

3.1. Free boson realization of Ah,,,(i) at level c = 1 

First, we would like to consider the free-boson realization of the generating relations 
(l)-( 10) for the algebra dh,)7 (g). For this we introduce the set of deformed free bosons 
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Fig. 1. The integration contour C. 

q(h) with continuous parameter h # 0 and discrete i = 1, . . . , r, which constitute the 
following deformed Heisenberg algebra ‘FI( n) : 

sinh(h/2q) 
[ai( Uj(l)] = t sinh y sinh(hBijh) 

Slnh(h/2r]‘) 
S(h + p). (29) 

We also use the notations al(h) = ui @)sinh@/2q)/sinh(h/2r]‘), which satisfy the relations 

[u: (A), UJ (,u)] = z sinh F sinh(hBijh) smh(h’2q’) S (h + CL). 
smh(h/2r]) 

The normal ordering for the exponential expressions of the above free bosons are defined 
in the following way [24], 

co cc 

exp 
s 

dAg1 (h)ai (A) exp 
s 

dpgz(p)aj (CL) 
-cc --oc, 

i/ 

dk ln(-A) 
= exp 

2ni 
Wj(h)gl(J-)g2(-0 

C 
lx 

exp 

(J 

cc 

dhl(hlh(h) + 
s 

-cc --oo 

where oij (A) is a function given by 

(30) 

[Ui(a)t uj(P)I = aij(h)6(h + EL), (31) 

C is a contour on the complex h-plane depicted in Fig. 1. Moreover, we introduce the 
following zero mode operators, 

[pi, Qjl = Bij. 

Proposition 3. The following bosonic expressions realize the generating relations (])-(I 0) 
of the algebra A*,,,(g) with c = 1, 

Ej(U) = eY exp(2niQj)exp(t;)exp (i+;(u)), 

F’(U) = ey exp(-2niQj) exp(-Pj) exp(-i4j(u)), 

(32) 

(33) 
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H]+(u) = e --2yEi(U*~)Fj(U~~) 
00 

= exp F J dheihU 
eiw4 

1 _ e&h/V 9 @) 3 
--03 

where 

@j (u) = jm dhei” si.$c,2) , 

-cc 

(34) 

(35) 

(36) 

(37) 

The proof of this proposition is also straightforward but requires tedious calculations. 
The normal ordering rule (30) and the following formula which can be found in [24] are 
very useful for the calculations, 

s dh ln(-h) eexh 

2nih 1 - e_hlV 
= In r(rjx) + (v - In rl) - i ln(2n), 

c 

where r(x) is the usual Gamma function which satisfy the following, 

r(x)r(l -x) = &. 

It is interesting to mention that the bosonization formulas for the currents Et(u) and 
Fi (u) are quite similar to those of the screening currents of the quantum (tZ, t)-deformed 
W-algebras [17]. 

3.2. Representations at other integer levels 

The bosonic expressions (32)-(37) only give a bosonic realization of dh,q(d) at level 
c = 1. However, as mentioned in Section 3.1, it is possible to obtain realizations of dh,q (i) 
at other integer levels using the knowledge gathered so far. The key point is to make use of 
Proposition 2 repeatedly; first in the case of c = co = cl = 1 (which leads to a realization 
at level c = 2), then in the case of c = co = 2, cl = 1, and so on. 

We give the following proposition 

Proposition 4. The level c = k(k E Z+) bosonic realization for the algebra dh,,,(i) can 
be obtained using k copies of the Heisenberg algebra (29) {H(n(‘)), 1 = 0, 1, . . . , k - l} 
(each of which realizes the level 1 representation for the algebras dh,+)(g) with 1 = 
0, l,... , k - 1) and the repeated use of Proposition 2 (the comultiplication A:). 

Actually, the above proposition provides a way to understand the meaning of the infinite 
Hopf family of algebras-instead of getting higher level representations of any distinguished 
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member of this family, one can study the level 1 representations for several members si- 
multaneously. Though the resulting higher level representations obtained from the above 
iteration of comultiplications may be highly reducible, it is rather instructive to show the 
unusual way in which the tensor product representation is defined in our infinite Hopf fam- 
ily of algebras, i.e. one must obtain the tensor product of the representations of different 
members of the family. 

To obtain bosonic realizations of negative integer level, one may use the antipodes S,‘. 
However, such realizations are not of much interest to us. 

3.3. The structure of Fock spaces 

The bosonic realizations of the algebra ~Ih,~(g) can be viewed as representations on the 
Fock space of the bosonic Heisenberg algebras. Therefore, for completeness, we have to 
say some words on the structure of Fock spaces. 

First, we specify the Fock space for the level 1 representation. Consider the abbreviated 
form (31) of the bosonic Heisenberg algebra ‘H(n). The structure functions oij (A) have the 
following properties: 

cxjj(;i) = -cqj(4), a!ij (a) = aji(h), (38) 

Let ]vac) be a right “vacuum state”. The right Fock space F(u) is generated from ]vac) as 
follows: 

0 

s dhlfl(hl)ai,(hl)Jvac), il = 1,2,. . . , r, 1 = 1,2,. . . , n, 

where fi (A) are functions which are analytic in a neighborhood of R+ except h = 0, where 
a simple pole may appear. For each concrete aij (A), proper asymptotic behaviors for fi (A) 
as h + +W are required. However, we do not specify them in detail (for the special case 
of g = sZ2, such asymptotics were given explicitly in [24]). 

Similarly, let (vat] be a left “vacuum state”. The left Fock space F* (q) is generated as 
follows. 

(vat] T d~tgl(~l)ai,(~t)~~~ 

0 
+oO 

s 
dh,g,(h,)ai,(&), i = 1,2,. . . , r, I = 1,2,. . .TZ, 

0 
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where gl (h) are functions which are analytic in a neighborhood of IF_ except h = 0, where 
a simple pole may appear. As in the case of fl (k), proper asymptotic behaviors for gl (h) as 
h + -cc are also required. 

As in the case of g = s/2, the pairing ( , ) : F*(Q) @I F’(q) + C between the left and 
right Fock spaces can be uniquelly defined by the following prescriptions, 
- (@cl, Iv=)) = 1, 

0 - (vacl j- dhg(h)ai (AL), 
J 

dLLf(p)aj (CL) Ivac) 

0 -lx 

s 

dh ln( -h) 
= 2ni g(k>f(-~>Wj(~>3 

c 

- the Wick theorem. 
Now let the vacuum states Ivac) and (vacl be such that 

ai (A) Ivac) = 0, h > 0, Pi Ivac) = 0, 

(vaclai(h) =O, h < 0, (vacIQi = 0. 

Let f(1) be analytic in some neighborhood of the real A-line, satisfying proper analytic 
behaviors as h + &co, and also have simple poles at h = 0. Then, the action of expressions 
like 

F = exp (_~d~.f@)ui(J-)) 

on F(n) and .P (n) are given, respectively, by the decompositions F = F_ F+ and F = 
i? F+ , where 

Moreover, these two actions are adjoint to each other, and the product of normal ordered 
operators like F atisfy our normal ordering rule (30). This completes the description of 
Fock spaces at level 1. 
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The Fock spaces for level k bosonic representation of Ah,,,(j) is nothing but the direct 
product of k copies of the level 1 Fock spaces, namely .@) (n(O), . . . , n@-‘)) = .T(n(‘)) 8 

x -T($-‘)). The left Fock space for the level k bosonic representation has a similar 

3.4. The case of c = 0: Evaluation representation 

As mentioned earlier, the structure of the algebra dh,, (i) changes drastically from c # 0 
to c = 0. This change is not only reflected in the different asymptotic behaviors for the 
generating currents, but also in the trivialization of the structure of the infinite Hopf family 
(see Remark 3), and it also affects the representation theory at c = 0. 

Just like the usual affine Lie algebras and the q-affine algebras, among the class of 
level 0 representations for the algebra dh,v (g), there is a special subclass which is finite 
dimensional. We adopt the terminology from the representation theory of affine and q-aftme 
algebras and call the finite dimensional level 0 representations of dh,, (d) the evaluation 
representations. 

Recall that there is no difference between the algebras dh,+m) (i)o and dh,rl(n) (.& for 
different n and m. Recall also that the evaluation representations for the usual q-affine 
algebras are best written in terms of “half currents” rather than the “total currents” Ei (u) 
and Fi(u) which we have been using for dh,,(g) so far. Therefore, it seems that the first 
step to give an evaluation representation for the algebra Ah,,, (2) is to split the total currents 
Ei (u) and Fi (u) into half currents. This task can be fulfilled in a completely analogous way 
as in the sl:! case. 

We define (for generic c) the half currents e’(u) and fi* (u) as follows: 

e:(u) = 7rn s dv Ei (u) 
!Gi sinh nn(u - v f iAc/4) ’ 

C* 

f:(u)=~d~ &* nrl,(~~;Fi*c,4)’ 

CT 

where the contours C* run from -cc to fco along the real axis, with the points u +iAc/4 + 
ik/v(k > 0) above C+, u + iAc/4 + ik/r](k < 0) below C+, u - iAc/4 + ik/q’(k > 0) 
above C_, u - iAc/4 + ik/q’(k 5 0) below C_. 

Note that the above choice of integral contours imply that the half currents e+(u), h+(u) 
are properly defined only in the strip 

whilst ei (u), j--(u) are defined only in the strip 
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We thus call the strips I7* the “domains of analyticity” for the half currents. We remark 
that the half currents satisfy the following Ding-Frenkel-like relations, 

however, these relations should be understood in some proper “analytic continuation sense” 
in contrast to the direct decompositions of formal power series [20,22] because in the above 
equations, e+ (U - &c/4) and ec (U +&c/4) cannot be properly defined simultaneously for 
the same value of U. 

Following the same spirit of analytical continuation, we have 

elr(u> = -eT(u - i/r]“), A-(U) = -f_‘(u - i/q”) 

and 

Z$+(u) = Hi+(u - i/r]“), 

where u E Ii_. 
The following proposition gives a simplest evaluation representation for dh,rl(i) with 

g = sL+1* 

Proposition 5. Let V be an (r + 1)-dimensional vector space with orthogonal basis {IJO, VI, 
. . . , v,}. The (r + 1)-dimensional evaluation representation of dh,l7(i) with g = s&.+1 on 
V,(q) = V 63 C[[e”‘7z]] is given by the following actions (u E l7+), 

- 
el+(u)vj,z =61j 

sinh irrnA 

smh rrn(u - z, - (r - 1)/2i?z) vj-l’z’ 
- 

fi+(U)Vj-I,, = alj 
sinh innA 

sinh 7rr](u - 2, - (r - 1)/2iA) ‘j”’ 

&+(U)uj,z. = JLj 
sinh nr,~(u - z - (r - 1 - 2)/2ih) 

sinh nn(u - z - (r - 1)/2ih) ‘jvj,’ 

+ kl,j 
sinh nn(c4 -z - (r - 1 + 2)/2ifi) 

sinh nn(u - z - (r - 2)/2 ih) ‘JJ” 

+ (1 - 61j - BE-l,j)Vj,z. 

The relations for the “negative” half currents are given by the same formulas but with 
u E n-. 

Note that for r = 1, the above evaluation representation reduces to the one presented in 
[24] for dh,V $2); for r] + 0, it reduces to the (r + 1)-dimensional evaluation representation 
for DYh(sZ,+t) [20]. 
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3.5. The intertwining (vertex) operators 

One of the important ingredients in the representation theory of afhne algebras is the 
intertwining operators which intertwine the infinite-dimensional representation and its ten- 
sor product with evaluation representation. For the infinite Hopf family of algebras, we 
can define analogous objects, also called intertwining operators, acting on the space of 
tensor product of the infinite-dimensional representation of the subsequent member of the 
same family, or on the space of tensor product of the evaluation representation and some 
infinite-dimensional representation of a fixed member of the family. 

Taking as the infinite-dimensional representation the level 1 bosonic representation, 
as the evaluation representation the (I + 1)-dimensional representation obtained above 
for g = sZ,+t, we now proceed to give the definition of a particular set of intertwining 
operators. 

Definition 3. The intertwining operators (vertex operators) (here 11’ = l/(tt + l/r])) 

q*(z) : v, @ 3(v) + F’(rl), *t(z) : F(v) + vz c3 WI) 

are those commuting with the action of dh,,@>, 3 

@(z)x = A(x>@W, O*(z>A(x) = x@*(z), 

‘P*(z)A(x) = x@*(z), ‘P(z)x = A(x)!P(z), 

wherex E dh,,(S>. 

The components of these vertex operators are defined as follows: 

@,(Zl" = C @j(Z)V @ Vj, @*(Z)(V 8 Uj) = @j*(Z)V, 
j=O 

**(Z)(Vj 8 v> = *~(Z>V, P(Z>U = C Vj 8 *j(Z>V. 
j=O 

where u E 3(n) and vj E V. 
Using the explicit form of the evaluation representation given in the last subsection and the 

comultiplication formulas (19)-(28), we are ready to obtain the intertwining relations (the 
commutation relations between vertex operators and the generating currents for dh,a(g)). 
The result will be a rather long list and we omit it here. We note that similar constructions 
for q-affine algebras were made in [8]. 

3 In [24], a twisted version of the vertex operators was defined so that the commutation relations of the 
twisted vertex operators yield the two-body S-matrix for the sine-Gordon model. In our case, we do not have 
such motivations to define twisted vertex operators. Moreover, remember that the comultiplications of [24] 
are different from the one we are using. 
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Using the bosonic Heisenberg algebra ‘H(n), one can, in principle, obtain bosonic real- 
izations of these intertwining operators. Then the calculation for the commutation relations 
between these intertwining operators and the correlation functions of such operators will 
become possible. We leave such tasks to future studies. 

4. Discussion 

In closing this paper we give the conclusions and some discussion. 
We defined the algebra dh,s (8) and its infinite Hopf family for all simply laced Lie 

algebras g. Using the deformed Heisenberg algebra B(n), we obtained the level 1 bosonic 
representation, and then by repeated use of the comultiplication we got the representations 
for all positive integer levels. For g = s&+1, we also gave the simplest (r + 1)-dimensional 
evaluation representation and the intertwining relations for the level 1 representation and 
the (r + I)-dimensional evaluation representation. 

Clearly, many relevant problems are still left open, among which we mention several 
which we would like to solve in future works. 

The first problem is: Why not nonsimply laced Lie algebras g? Indeed, no reason can be 
stated a priori that no analogous algebras exist for nonsimply laced algebras g. However, 
for self-consistency, we intentionally excluded nonsimply laced g in our consideration. The 
reason is that, for such a g, the Cartan matrix is not symmetric, so that the Heisenberg 
algebra X(n) is not well-defined (the condition (38) is violated). Probably, the way around 
is to use the symmetrized Cartan matrix instead of the Cartan matrix. Then, we can give 
well-defined Heisenberg algebra N(n), but the Serre-like relations (8) and (9) are still not 
enough to define the algebra dh,rl(g), because there are cases for Aij = -2, -3, etc. 

The second problem is the other possible realizations of the algebra dh,o (g). For q-affine 
algebras, Yangian doubles and dh,rl (s/2), three different realizations are known to exist, i.e. 
the current realization, Drinfeld generator realization and the Reshetkhin-Semenov-Tiar- 
Shansky (RLL) realization. For our algebra, it seems important to find the third realization 
because this realization has direct connection with the Yang-Baxter relation and, hence, 
is more convenient while considering the possible application of the algebra in integrable 
quantum field theories. 

As mentioned in Section 1, we postulate that our algebra might have important application 
in describing the quantum symmetries of affine Toda theory, however such applications can 
be made possible only if we have identified the R-matrix of our algebra with the quantum S- 
matrix of affine Toda theory. In this respect, the other form of the comultiplication which is 
compatible with RLL relations is also important because, under such a comultiplication, the 
commutation relations between the interwining operators would become a set of Faddeev- 
Zamolodchikov-like algebra which should be explained as the operator form of the quantum 
scattering of the corresponding integrable quantum field theory - the affine Toda theory as 
we postulate it. 

Various considerations on the different choices of domains for the deformation parameters 
tz and r] are also important. On this point, the authors of [24] have already listed many 
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problems with which we wholeheartedly agree. Besides the problems listed in [24], we are 
also interested in the case A + co, which should correspond to the case of crystal base for 
q-affine algebras. 

Lastly, we would like to mention the possible connections between our algebra and the 
quantum (h, .$)-deformed Virasoro and W-algebras. The q- and h-deformed Virasoro (and 
W) Poisson algebras were known to be closely connected to q-affine algebra and Yangian 
double at the critical level [7,16]. The quantum versions of these deformed algebras were 
also known to exist and nobody knowns to which deformed affine algebras they correspond 
The algebras given in this paper may be the right candidate to correspond to the quantum 
(A, o-deformed Virasoro W-algebras. We point out that algebras, corresponding to the 
q, p-deformed quantum W-algebras also exist, which are generalizations of the elliptic 
algebra A,,,(~~) to other g with higher ranks. We shall present the bosonic representation 
for the current realization for such algebras (which we call d*,,(g), representative of yet 
another example of infinite Hopf family structure) in the next paper [ 191. 
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